Prediction of Fatigue Life for Cfrp Strengthened Steel Connections Under Combined Loads
Autor(en): |
Hongbo Liu
Xiao-Ling Zhao |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | International Journal of Structural Stability and Dynamics, Mai 2013, n. 4, v. 13 |
Seite(n): | 1250059 |
DOI: | 10.1142/s0219455412500599 |
Abstrakt: |
The girth welds of the steel connections in subsea pipelines are subjected to combined fatigue loading and static tensile loading in most of their service life. In this paper, both experimental and numerical studies are presented on the fatigue behavior of Carbon Fiber Reinforced Polymer (CFRP) composites repaired steel connections under combined loads. In the experimental program, each specimen is designed to be formed by two steel plates joined together by single-sided girth welds as a simplification of subsea pipelines, and reinforced by CFRP sheets on one side. The applied loads include a constant amplitude tensile cyclic load combined with a tensile static load, which is perpendicular to the cyclic load. The experimental results reveal that the superimposition of the tensile static load leads to a prolonged fatigue life. The effect gets more noticeable with increased tensile load. To further this study, an analytical model is developed on the basis of the Linear Elastic Fracture Mechanics (LEFM) method. It can be used to predict the fatigue lives efficiently. The comparisons with experimental results reveal that the analytical method is able to reasonably predict the fatigue crack growth life. Parametric studies are therefore performed using the proposed analytical model. The influence of CFRP layers, stress range and tensile static stress on the fatigue life was evaluated. |
- Über diese
Datenseite - Reference-ID
10352832 - Veröffentlicht am:
14.08.2019 - Geändert am:
14.08.2019