Prediction of Compaction and Strength Properties of Amended Soil Using Machine Learning
Autor(en): |
Woubishet Zewdu Taffese
Kassahun Admassu Abegaz |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 24 April 2022, n. 5, v. 12 |
Seite(n): | 613 |
DOI: | 10.3390/buildings12050613 |
Abstrakt: |
In the current work, a systematic approach is exercised to monitor amended soil reliability for a housing development program to holistically understand the targeted material mixture and the building input derived, focusing on the three governing parameters: (i) optimum moisture content (OMC), (ii) maximum dry density (MDD), and (iii) unconfined compressive strength (UCS). It is in essence the selection of machine learning algorithms that could optimally show the true relation of these factors in the best possible way. Thus, among the machine learning approaches, the optimizable ensemble and artificial neural networks were focused on. The data sources were those compiled from wide-ranging literature sources distributed over the five continents and twelve countries of origin. After a rigorous manipulation, synthesis, and results analyses, it was found that the selected algorithms performed well to better approximate OMC and UCS, whereas that of the MDD result falls short of the established threshold of the set limits referring to the MSE statistical performance evaluation metrics. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
1.61 MB
- Über diese
Datenseite - Reference-ID
10679466 - Veröffentlicht am:
18.06.2022 - Geändert am:
10.11.2022