A Prediction Model for Soil–Water Characteristic Curve Based on Machine Learning Considering Multiple Factors
Autor(en): |
Guangchang Yang
Jianping Liu Yang Liu Nan Wu Tingguang Liu |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 2 Juli 2024, n. 7, v. 14 |
Seite(n): | 2087 |
DOI: | 10.3390/buildings14072087 |
Abstrakt: |
Aiming at the problem of long soil–water characteristic curve (SWCC) testing times and the difficulty of prediction accuracy in complex environments, this paper establishes a SWCC prediction model based on a neural network machine learning algorithm which can take into account the influence of multiple factors such as temperature, deformation, and salinity. The input layer of the model can reflect the physical properties of the soil and the influence of the external environment, while the suction is taken as an input variable, which in turn can directly obtain the water content under the corresponding conditions. The predictive ability of the model is verified by comparing and analyzing the predicted results of the SWCC under different temperature, void ratio, and salinity conditions with the experimental results. The research in this paper provides a new method for predicting the SWCC considering multiple factors, and the prediction accuracy of the model is related to the amount of experimental data. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
6.48 MB
- Über diese
Datenseite - Reference-ID
10795289 - Veröffentlicht am:
01.09.2024 - Geändert am:
01.09.2024