0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Prediction Model for Safe Operation of Pumping Stations Optimized by the Sparrow Search Algorithm and BP Neural Network

Autor(en): ORCID
ORCID
ORCID
ORCID
ORCID
ORCID
ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2024
Seite(n): 1-12
DOI: 10.1155/2024/5358915
Abstrakt:

The pumping station is one of the critical parts of the hydraulic structure in China. Traditional forecasting methods are limited in accuracy, time-consuming, and high cost, resulting in limited data availability. Therefore, simulation model analysis based on soft computation is a realistic and valuable alternative. This article intends to use the BP neural network to predict the safe operation status of pump stations and optimize the initial threshold and weight information of the BP network using the sparrow search algorithm (SSA) to improve the accuracy and generalization ability of the model. In addition, to more accurately reflect the correlation between various influencing factors and the safe operation status of the pumping station, the entropy weight method and the analytic hierarchy process were used to obtain the comprehensive weights of each main influencing factor. The experimental results show that the SSA-BP model can accurately predict the safe operation status of pumping stations, and compared with other traditional models, the SSA-BP model has better convergence and higher accuracy. This model provides a new approach for predicting the safe operation of pumping stations and has particular reference significance for predicting the safe operation of other pumping stations.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1155/2024/5358915.
  • Über diese
    Datenseite
  • Reference-ID
    10759404
  • Veröffentlicht am:
    15.03.2024
  • Geändert am:
    15.03.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine