Prediction and Interpretation of Residual Bearing Capacity of Cfst Columns under Impact Loads Based Interpretable Stacking Fusion Modeling
Autor(en): |
Guangchao Yang
Ran Yang Jian Zhang |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 26 Oktober 2023, n. 11, v. 13 |
Seite(n): | 2783 |
DOI: | 10.3390/buildings13112783 |
Abstrakt: |
The utilization of Concrete-filled steel Tubular (CFST) columns is increasingly widespread. However, the assessment of the residual bearing capacity of CFST columns currently relies mainly on costly and time-consuming experiments and numerical simulations. In this study, we propose a machine learning-based model for rapidly identifying the residual bearing capacity of CFST columns. The results demonstrate that the predictions of the proposed Stacking-KRXL model align well with the actual values, with most prediction errors falling within ±10%. The RSquared value of 0.97 significantly surpasses that of other methods. The stability and robustness of the model are analyzed. Additionally, the Shapley additive explanations method is applied for global and local interpretations, revealing positive or negative correlations between different parameters and the residual bearing capacity of CFST columns, mainly influenced by the concrete area in the core region. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
7.7 MB
- Über diese
Datenseite - Reference-ID
10754279 - Veröffentlicht am:
14.01.2024 - Geändert am:
07.02.2024