0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Predicting Wall Thickness Loss in Water Pipes Using Machine Learning Techniques

Autor(en): (The Hong Kong Polytechnic University Hung Hom Hong Kong)
(Department of Civil Engineering and Energy Technology OsloMet—Oslo Metropolitan University 0167 Oslo Norway)
(The Hong Kong Polytechnic University Hung Hom Hong Kong)
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: ce/papers, , n. 5, v. 6
Seite(n): 1087-1092
DOI: 10.1002/cepa.2075
Abstrakt:

Wall thickness loss in water pipes has been found to be positively correlated with water pipe failure. The reliability of water pipes reduces as their wall thickness loss increases. Although previous studies have investigated pipe failure modeling using historical failure data, however, indirect failure modeling via wall thickness loss is yet to be explored. Hence, this study develops machine learning (ML) models to predict wall thickness loss in water pipes. Random Forest (RF) and Gradient Boosting Machine (GBM) are chosen as the base models and are integrated with Bayesian Optimization (BO) algorithm for hyperparameters selection. The predictive models are evaluated using root mean square error (RMSE), mean absolute error (MEA), mean absolute percentage error (MAPE), and coefficient of determination (R²). Based on the evaluation metrics, the hybrid models (i.e., RF+ BO and GBM+BO) outperformed the base models (RF and GBM), showing the importance of the systematic selection of hyperparameters. The best model (RF + BO) achieved an RMSE, MAE, MAPE, and R² value of 3.212, 2.494, 11.506, and 0.910, respectively. These metrics show the high predictive capability of the model, which can be used by water infrastructure management to predict wall thickness loss in water pipes.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1002/cepa.2075.
  • Über diese
    Datenseite
  • Reference-ID
    10767294
  • Veröffentlicht am:
    17.04.2024
  • Geändert am:
    17.04.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine