0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Predicting Performance Measurement of Residential Buildings Using an Artificial Neural Network

Autor(en):


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Civil Engineering Journal, , n. 3, v. 7
Seite(n): 461-476
DOI: 10.28991/cej-2021-03091666
Abstrakt:

Application Earned Value Management (EVM) as a construction project control technique is not very common in the Republic of Iraq, in spite of the benefit from EVA to the schedule control and cost control of construction projects. One of the goals of the present study is the employment machine intelligence techniques in the estimation of earned value; also this study contributes to extend the cognitive content of study fields associated with the earned value, and the results of this study are considered a robust incentive to try and do complementary studies, or to simulate a similar study in alternative new technologies. This paper is aiming at introducing a novel and alternative method of applying Artificial Intelligence Techniques (AIT) for earned value management of the construction projects through using Artificial Neural Networks (ANN) to build mathematical models to be used to estimate the Schedule Performance Index (SPI), Cost Performance Index (CPI) and to Complete Cost Performance Indicator (TCPI) in Iraqi residential buildings before and at execution stage through using web-based software to perform the calculations in the estimation quickly, accurately and without effort. ANN technique was utilized to produce new prediction models by applying the Backpropagation algorithm through Neuframe software. Finally, the results showed that the ANN technique shows excellent results of estimation when it is compared with MLR techniques. The results were interpreted in terms of Average Accuracy (AA%) equal to 83.09, 90.83, and 82.88%, also, correlation coefficient (R) equal to 90.95, 93.00, and 92.30% for SPI, CPI and TCPI respectively.

Copyright: © 2021 Salah J. Mohammed, Hesham A. Abdel-khalek, Sherif M. Hafez
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10589963
  • Veröffentlicht am:
    08.03.2021
  • Geändert am:
    02.06.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine