0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Predicting Displacement Data of Three-Dimensional Reinforced Concrete Frames with Different Strengthening Applications Using ANN

Autor(en):
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Periodica Polytechnica Civil Engineering
DOI: 10.3311/ppci.9652
Abstrakt:

In this study, the artificial neural network (ANN) methodwas used to estimate unavailable displacement data of threedimensional(3D) reinforced concrete (RC) frames with differentstrengthening applications. Four 3D-RC frames wereproduced two storeys and one bay in 1/6 geometric scale withthe deficiencies commonly observed in residential buildingsin Turkey. The first specimen was a bare frame containing nobrick walls and no strengthening. The second specimen wasall brick walls and no strengthening. The third specimen wasstrengthened with an internal steel panel. The fourth specimenwas strengthened with an infilled RC shear wall. The specimenswere tested under reverse cyclic lateral loading and constantvertical loading until failure. This study investigated the estimationof displacement data when the linear variable differentialtransformer of 104 numbers is corrupted and some hystereticloop data are missing. Using the method proposed the unavailableor incorrect displacement data can be predicted by ANNwithout performing any additional experiments. Root meansquared error, coefficient determination, mean absolute error,mean squared error and normalised mean absolute error statisticalvalues were used to compare experimental results withANN model results. These statistical values usually exhibit verylow error rate until a cycle of maximum load is reached.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.3311/ppci.9652.
  • Über diese
    Datenseite
  • Reference-ID
    10536662
  • Veröffentlicht am:
    01.01.2021
  • Geändert am:
    19.02.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine