A Pre-Process Enhanced Digital Image Correlation Approach for Smart Structure Monitoring
Autor(en): |
Mohammed Abbas Mousa
Mustafasanie M. Yussof Lateef N. Assi SeyedAli Ghahari |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Infrastructures, Oktober 2022, n. 10, v. 7 |
Seite(n): | 141 |
DOI: | 10.3390/infrastructures7100141 |
Abstrakt: |
This research provides a practical guideline for Digital Image Correlation (DIC) data variations minimization in structural engineering through simple image processing techniques. The main objective of this research is to investigate the Pixel Averaging (P.A.) effect on the differential strain Diff(εx) variations. Three concrete arches were tested with three-point bending using the DIC technique for strain measurements. The measured strains are obtained through two virtual horizontal extensometers in the middle of each arch. The Diff(εx) was selected to avoid other 2D-DIC issues, such as the sample-camera out-of-plane movement. Three image cases, namely, one, ten, and twenty averaged images, were used for DIC analysis of each arch. The conditions of each image case are assessed by computing the Diff(εx) variance and the linear least square criterion (R2) between the two extensometers. The second objective is to examine the speckles’ dilation effects on the speckle pattern density and surface component quality utilizing the Image Erode (I.E.) technique. The (P.A.) technique provided consistent differential strain Diff(εx) values with a variance reduction of up to (90%) when averaged images were used. The (R2) has considerably increased (from 0.46, 0.66, 0.91 to 0.90, 0.96, 0.99), respectively, for the three samples. Moreover, the (I.E.) technique provided qualitatively denser speckles with a highly consistent DIC surface component. |
Copyright: | © 2022 the Authors. Licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
10.3 MB
- Über diese
Datenseite - Reference-ID
10722806 - Veröffentlicht am:
22.04.2023 - Geändert am:
10.05.2023