0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

The Personalized Thermal Comfort Prediction Using an MH-LSTM Neural Network Method

Autor(en):
ORCID


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2024
Seite(n): 1-14
DOI: 10.1155/2024/2106137
Abstrakt:

As demand for indoor thermal comfort increases, occupants’ subjective thermal sensation is becoming an important indicator of the building environment. Traditional models like the predicted mean vote-based model may not be reliable for individual comfort. This study proposed the multihead long short_term memory (LSTM) model to reflect physical and environment-driven data variation. Controlled experiments were conducted with individual temperature measurements of six participants, and the collected data showed significant potential to predict individual thermal comfort using a model trained for each person. The results derived from this study can be utilized, in future, for predicting the thermal comfort and for optimizing the thermal environments using personal body temperature and surrounding environmental data in a space where mainly independent activities are performed. This study contributes to the relevant literature by suggesting a method that predicts thermal comfort based on the multihead LSTM method.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1155/2024/2106137.
  • Über diese
    Datenseite
  • Reference-ID
    10771562
  • Veröffentlicht am:
    29.04.2024
  • Geändert am:
    29.04.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine