Pavement Distress Detection Methods: A Review
Autor(en): |
Antonella Ragnoli
Maria De Blasiis Alessandro Di Benedetto |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Infrastructures, Dezember 2018, n. 4, v. 3 |
Seite(n): | 58 |
DOI: | 10.3390/infrastructures3040058 |
Abstrakt: |
The road pavement conditions affect safety and comfort, traffic and travel times, vehicles operating cost, and emission levels. In order to optimize the road pavement management and guarantee satisfactory mobility conditions for all road users, the Pavement Management System (PMS) is an effective tool for the road manager. An effective PMS requires the availability of pavement distress data, the possibility of data maintenance and updating, in order to evaluate the best maintenance program. In the last decade, many researches have been focused on pavement distress detection, using a huge variety of technological solutions for both data collection and information extraction and qualification. This paper presents a literature review of data collection systems and processing approach aimed at the pavement condition evaluation. Both commercial solutions and research approaches have been included. The main goal is to draw a framework of the actual existing solutions, considering them from a different point of view in order to identify the most suitable for further research and technical improvement, while also considering the automated and semi-automated emerging technologies. An important attempt is to evaluate the aptness of the data collection and extraction to the type of distress, considering the distress detection, classification, and quantification phases of the procedure. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
7.34 MB
- Über diese
Datenseite - Reference-ID
10723318 - Veröffentlicht am:
22.04.2023 - Geändert am:
10.05.2023