0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Parameter Design of a Photovoltaic Storage Battery Integrated System for Detached Houses Based on Nondominated Sorting Genetic Algorithm-II

Autor(en):
ORCID
ORCID

ORCID




Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 6, v. 14
Seite(n): 1834
DOI: 10.3390/buildings14061834
Abstrakt:

With the deteriorating environment and excessive consumption of primary energy, solar energy has become used in buildings worldwide for renewable energy. Due to the fluctuations of solar radiation, a solar photovoltaic (PV) power system is often combined with a storage battery to improve the stability of a building’s energy supply. In addition, the real-time energy consumption pattern of the residual houses fluctuates; a larger size for a PV and battery integrated system can offer more solar energy but also bring a higher equipment cost, and a smaller size for the integrated system may achieve an energy-saving effect. The traditional methods to size a PV and battery integrated system for a detached house are based on the experience method or the traversal algorithm. However, the experience method cannot consider the real-time fluctuating energy demand of a detached house, and the traversal algorithm costs too much computation time. Therefore, this study applies Nondominated Sorting Genetic Algorithm-II (NSGA-II) to size a PV and battery integrated system by optimizing total electricity cost and usage of the grid electricity simultaneously. By setting these two indicators as objectives separately, single-objective genetic algorithms (GAs) are also deployed to find the optimal size specifications of the PV and battery integrated system. The optimal solutions from NSGA-II and single-objective GAs are mutually verified, showing the high accuracy of NSGA-II, and the rapid convergence process demonstrates the time-saving effect of all these deployed genetic algorithms. The robustness of the deployed NSGA-II to various grid electricity prices is also tested, and similar optimal solutions are obtained. Compared with the experience method, the final optimal solution from NSGA-II saves 68.3% of total electricity cost with slightly more grid electricity used. Compared with the traversal algorithm, NSGA-II saves 94% of the computation time and provides more accurate size specifications for the PV and battery integrated system. This study suggests that NSGA-II is suitable for sizing a PV and battery integrated system for a detached house.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10787546
  • Veröffentlicht am:
    20.06.2024
  • Geändert am:
    20.06.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine