Optimized Wayfinding Signage Positioning in Hospital Built Environment through Medical Data and Flows Simulations
Autor(en): |
Weihong Guo
Yiwei He |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 16 September 2022, n. 9, v. 12 |
Seite(n): | 1426 |
DOI: | 10.3390/buildings12091426 |
Abstrakt: |
This study argues that medical data should be better utilized and attention should be paid to the patient’s visual experience during their journey to the emergency department (ED). Wayfinding in medical settings remains a challenge for patients. One reason is that decision makers do not adequately understand what the patients have seen and been through during their journey in the ED built environment, which leads to inaccurate selection and misplacement of signage. This study claims that there is still room to optimize existing wayfinding design methods. This study selected a representative large-scale general hospital in China, collected the annual healthcare information system (HIS) data of ED patients in 2021, and reproduced the clinical process of ED patients in the form of a probability treemap through categorical analysis. Furthermore, Massmotion was used to simulate the patient’s journey and obtain their vision focus area (VFA). With the VFA and field observation record, the research targeted 17 wall surfaces in the ED built environment. On the basis of the comparative analysis, we found the misplacement of the current signage system and the direction of future optimization. This method can provide a reference for designers during their decision-making process to aim for an efficient wayfinding system. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
100.34 MB
- Über diese
Datenseite - Reference-ID
10692679 - Veröffentlicht am:
23.09.2022 - Geändert am:
10.11.2022