0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

An Optimized Dual-View Snake Unet Model for Tunnel Lining Crack Detection

Autor(en):






Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 5, v. 15
Seite(n): 777
DOI: 10.3390/buildings15050777
Abstrakt:

The prompt and accurate detection of tunnel lining cracks is essential for maintaining the safety and reliability of tunnels. Deep learning-based approaches have significantly advanced automated crack detection, delivering improved efficiency and precision in tunnel inspection. Nevertheless, the intricate characteristics of cracks, manifesting as fine, elongated, and irregular structures, pose substantial challenges for deep learning-based semantic segmentation networks, hindering their ability to achieve comprehensive and accurate identification. Aiming to tackle these challenges, this paper proposes a novel dual-view snake Unet (DSUnet) model, which integrates a hybrid snake cascading (HSC) module and a Haar wavelet downsampling (HWD) operation. The HSC module enhances the network’s capability of extracting tunnel lining cracks by synergistically combining features derived from standard convolutions and bidirectional dynamic snake convolutions, thereby capturing intricate geometric and contextual information. Meanwhile, the HWD operation facilitates the preservation of critical spatial information by performing multi-scale feature refinement, which effectively reduces segmentation uncertainty. Experimental results demonstrate the proposed DSUnet achieves a mean Dice coefficient (MDice) of 71.8% and a mean intersection over union (MIoU) of 77.4%. Compared to the baseline Unet model, DSUnet delivers improvements of 1.3% in MDice and 0.6% in MIoU, respectively. Additionally, the proposed model consistently outperforms several state-of-the-art semantic segmentation networks, highlighting its robustness and accuracy in detecting tunnel lining cracks. These findings position DSUnet as a promising tool for automated tunnel inspection, contributing to improved safety and operational reliability.

Copyright: © 2025 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10820567
  • Veröffentlicht am:
    11.03.2025
  • Geändert am:
    11.03.2025
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine