Optimal Simulation of Three Peer to Peer (P2P) Business Models for Individual PV Prosumers in a Local Electricity Market Using Agent-Based Modelling
Autor(en): |
Marco Lovati
Xingxing Zhang Pei Huang Carl Olsmats Laura Maturi |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 23 Juli 2020, n. 8, v. 10 |
Seite(n): | 138 |
DOI: | 10.3390/buildings10080138 |
Abstrakt: |
Solar photovoltaic (PV) is becoming one of the most significant renewable sources for positive energy district (PED) in Sweden. The lacks of innovative business models and financing mechanisms are the main constraints for PV’s deployment installed in local community. This paper therefore proposes a peer-to-peer (P2P) business model for 48 individual building prosumers with PV installed in a Swedish community. It considers energy use behaviour, electricity/financial flows, ownerships and trading rules in a local electricity market. Different local electricity markets are designed and studied using agent-based modelling technique, with different energy demands, cost–benefit schemes and financial hypotheses for an optimal evaluation. This paper provides an early insight into a vast research space, i.e., the operation of an energy system through the constrained interaction of its constituting agents. The agents (48 households) show varying abilities in exploiting the common PV resource, as they achieve very heterogeneous self-sufficiency levels (from ca. 15% to 30%). The lack of demand side management suggests that social and lifestyle differences generate huge impacts on the ability to be self-sufficient with a shared, limited PV resource. Despite the differences in self-sufficiency, the sheer energy amount obtained from the shared PV correlates mainly with annual cumulative demand. |
Copyright: | © 2020 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
3.14 MB
- Über diese
Datenseite - Reference-ID
10428777 - Veröffentlicht am:
30.07.2020 - Geändert am:
02.06.2021