Ontology-Guided Generation of Mechanized Construction Plan for Power Grid Construction Project
Autor(en): |
Xiaohui Gao
Yinling Li Ruiwu Wang Xueqing Ding Xin Wang Xin Xu |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 8 Oktober 2024, n. 10, v. 14 |
Seite(n): | 3271 |
DOI: | 10.3390/buildings14103271 |
Abstrakt: |
Mechanized construction is being fully implemented in the electric power infrastructure domain to ensure construction safety, enhance project quality, and improve efficiency. Traditional methods of designing mechanized construction plans are often inefficient due to their labor-intensive processes and heavy reliance on human expertise. This study introduces and evaluates an ontology-guided system designed to automate mechanized construction planning for power grid projects. The developed ontology effectively models domain-specific knowledge, enabling the semantic integration of data from various sources. By leveraging SPARQL queries, the ontology-guided system incorporates knowledge reasoning capabilities that facilitate the automated selection of construction equipment and the generation of comprehensive construction plans. A prototype system incorporating an ontology-guided mechanism has been developed, showcasing marked enhancements in efficiency and accuracy over traditional manual methods, as evidenced by case studies and expert evaluations. The research results emphasize the potential of ontology-guided systems in innovating architectural planning, providing an extensible and standardized approach. Expert evaluation indicates that the system achieves 71.38% effectiveness in generating mechanized construction plans. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
4.37 MB
- Über diese
Datenseite - Reference-ID
10804811 - Veröffentlicht am:
10.11.2024 - Geändert am:
10.11.2024