An Ontology Framework for ERBS (Evidence/Risk-Based Safety) Management of Divisional and Subdivisional Works with High Risk
Autor(en): |
Jianjun She
Yilun Zhou Zihao Guo Song Ye |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 18 Dezember 2024, n. 12, v. 14 |
Seite(n): | 3740 |
DOI: | 10.3390/buildings14123740 |
Abstrakt: |
As an important data source, the Building Information Model (BIM) plays an important role in modern building safety management. Numerous studies have closely examined automatic compliance inspections for building safety and the safety management of dangerous projects. However, the value of the BIM has not been fully exploited in evidence-based practices of building safety. To address this limitation, this paper proposes an ontology-based Evidence/Risk-Based Safety (ERBS) management framework for divisional and subdivisional works with high risk, which includes: (1) BIM data extraction based on dynamo; (2) creation of an ontology based on building information and the ERBS management process model; (3) converting BIM data and evidence into ontology individuals; and (4) integrating the ontology through semantic web technology and using the Semantic Web Rule Language (SWRL) to conduct rule-based reasoning on the ontology. A case study shows that the framework is effective for the ERBS management of divisional and subdivisional works with high risk. The framework proposed in this study provides effective safety management methods for high-risk projects that can be applied in wider engineering practice in the future. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
9.29 MB
- Über diese
Datenseite - Reference-ID
10810220 - Veröffentlicht am:
17.01.2025 - Geändert am:
17.01.2025