Numerical Studies on the Failure Process of Heterogeneous Rock Material with Preexisting Fracture under Uniaxial Compression
Autor(en): |
Qi Zhang
Dan Ma Jiangfeng Liu Kai Zhang Zhiqiang Fan |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Advances in Civil Engineering, 2018, v. 2018 |
Seite(n): | 1-12 |
DOI: | 10.1155/2018/9203549 |
Abstrakt: |
It is of vital importance to understand the failure processes of the heterogeneous rock material with different kinds of preexisting fractures in underground engineering. A damage model was introduced to describe the initiation and propagation behaviors of the fractures in rock. Reduced parameters were applied in this work because the microcracks in the rock were neglected. Then, the numerical model was validated through comparing the simulation results with the laboratory observations. Finally, a number of numerical uniaxial compressive tests were performed on heterogeneous rock specimens with preexisting fracture, and the influence of the heterogeneity of the rock and the angle and length of the preexisting fractures was fully discussed. The results showed that the brittleness of the rock increased with the increase of the homogeneity index, and tensile failure was the main failure form for relatively heterogeneous rock, whilst shear failure was the main failure form for relatively homogeneous rock. The uniaxial compressive strengths of the specimens with the angles of 0, 30, 45, and 60 of the preexisting fracture dropped 62.7%, 54.7%, 46.6%, and 38.2% compared with that of the intact specimen; the tensile cracks were more difficult to form, and the required load was increasing with the increase of the angle of the preexisting fracture; besides, antiwing cracks were difficult to form than wing cracks because the tensile stress in wing cracks' area was greater than that in antiwing cracks' area. The uniaxial compressive strengths of the specimens with the lengths of 20 mm, 25 mm, 30 mm, and 35 mm of preexisting fracture dropped 38.6%, 46.6%, 53.4%, and 56.6% compared with that of the intact specimen, and the damage conditions of the samples with different lengths of preexisting fracture were similar. |
Copyright: | © 2018 Qi Zhang et al. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
4.59 MB
- Über diese
Datenseite - Reference-ID
10176483 - Veröffentlicht am:
30.11.2018 - Geändert am:
02.06.2021