0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Numerical Analysis and Experimental Investigation of High Cycle Fatigue Behavior in Additively Manufactured Ti–6Al–4V Alloy

Autor(en):




ORCID

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 8, v. 13
Seite(n): 2011
DOI: 10.3390/buildings13082011
Abstrakt:

Additive Manufacturing (AM) of the Ti–6Al–4V alloy has gained significant importance across various industries, including biomedical, aerospace, cellular, and land vehicle applications, due to its numerous benefits. The certification of performance and reliability of AM materials, particularly for critical applications, heavily relies on evaluating fatigue strength. In this study, a numerical analysis based on the finite element method is presented to predict the High Cycle Fatigue (HCF) behavior of AM Ti–6Al–4V alloy. The investigation focuses on exploring the sensitivity of material fatigue life to surface roughness and Ultimate Tensile Strength (UTS). Uniaxial tensile and High Cycle Fatigue (HCF) tests were conducted on Ti–6Al–4V alloy samples extracted from rectangular walls manufactured using the Laser Metal Deposition (LMD) process. The walls were surface machined prior to sample extraction. Porosity and surface roughness measurements were performed on the samples. Numerical simulations of the HCF tests were carried out, considering various surface roughness ranges and UTS values. The numerical results were then compared to experimental data. The findings consistently demonstrated that higher surface roughness led to a shorter fatigue life, while higher UTS values resulted in a longer fatigue life. The numerical solutions aligned with the experimental results, indicating the efficacy of the finite element method in predicting the fatigue behavior of AM Ti–6Al–4V alloy. These insights contribute to a better understanding of the relationship between surface roughness, UTS, and fatigue life of Ti–6Al–4V alloys manufactured by AM.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10737329
  • Veröffentlicht am:
    02.09.2023
  • Geändert am:
    14.09.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine