0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

A novel Tunnel Positioning Approach via Long Term Evolution Cellular Signal

Autor(en):



Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Journal of Physics: Conference Series, , n. 1, v. 2504
Seite(n): 012044
DOI: 10.1088/1742-6596/2504/1/012044
Abstrakt:

Currently, Radio Frequency Identification System (RFIS), ZigBee and Ultra-Wide Band (UWB) methods are mainly used to positioning in enclosed space. But they require complex hardware layout and high hardware costs, resulting in the inability to meet the positioning needs of complex environments. Therefore, we designed a novel tunnel positioning approach via Long Term Evolution (LTE) cellular signal. This approach includes: signal acquisition, data preprocessing, feature database construction, model training and real-time positioning. In the data preprocessing stage, we adopt 3sigma and Kalman filtering to filter outliers and noise, and use information gain and information gain rate to select effective features. In the real-time positioning phase, a combination of K-Weighted Nearest Neighbor (KWNN) and Support Vector Regression (SVR) is used for positioning in the tunnel. To verify the designed approach, we did an experiment using data from the actual tunnel. The experimental results show that this approach has better positioning accuracy than FK-NN [1] and TSVR [2].

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1088/1742-6596/2504/1/012044.
  • Über diese
    Datenseite
  • Reference-ID
    10777430
  • Veröffentlicht am:
    12.05.2024
  • Geändert am:
    12.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine