A novel imbalance fault diagnosis method based on data augmentation and hybrid deep learning models
Autor(en): |
Caizi Fan
(School of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning, P. R. China)
Yongchao Zhang (School of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning, P. R. China) Hui Ma (School of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning, P. R. China) Zeyu Ma (School of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning, P. R. China) Xunmin Yin (Harbin Marine Boiler and Turbine Research Institute, Harbin, Heilongjiang, P. R. China) Xiaoxu Zhang (Harbin Marine Boiler and Turbine Research Institute, Harbin, Heilongjiang, P. R. China) Songtao Zhao (Harbin Marine Boiler and Turbine Research Institute, Harbin, Heilongjiang, P. R. China) |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Structural Health Monitoring |
DOI: | 10.1177/14759217241291143 |
- Über diese
Datenseite - Reference-ID
10812103 - Veröffentlicht am:
17.01.2025 - Geändert am:
17.01.2025