A Novel Data Analytics Methodology for Analyzing Real Estate Brokerage Markets with Case Study of Dubai
Autor(en): |
Ahmed Saif Al Abdulsalam
Maged Mohammed Al-Baiti Al Hashemi Mohammed Zayed Sulaiman Aleissaee Abdelaziz Saleh Husain Almansoori Gurdal Ertek Thouraya Gherissi Labben |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 8 Oktober 2024, n. 10, v. 14 |
Seite(n): | 3068 |
DOI: | 10.3390/buildings14103068 |
Abstrakt: |
Despite the vast economic impact of real estate markets worldwide, research on real estate brokerage markets remains limited. Specifically, there are few studies that provide a systematic, integrated, and replicable analytical methodology to analyze and benchmark a given real estate brokerage market. To this end, this paper introduces a data analytics methodology for analyzing real estate brokerage markets, integrating various statistical and analytical methods to extract insights from market data, supporting real estate investment decisions. The applicability of the methodology is demonstrated with a case study analyzing data from the top 50 real estate brokerage firms in Dubai, UAE. As shown in the case study, applying this methodology to brokerage market data enables the visual benchmarking of firms, identification of similarities between them, profiling and comparison of clusters of firms, and exploration of the impacts of various categorical and numerical attributes on performance. A notable finding for the Dubai real estate brokerage market is that it takes a minimum of 700 days for a brokerage firm to mature and advance to the next level of business success. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
3.39 MB
- Über diese
Datenseite - Reference-ID
10804711 - Veröffentlicht am:
10.11.2024 - Geändert am:
10.11.2024