^ A Novel Approach for Automatic Detection of Concrete Surface Voids Using Image Texture Analysis and History-Based Adaptive Differential Evolution Optimized Support Vector Machine | Structurae
0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

A Novel Approach for Automatic Detection of Concrete Surface Voids Using Image Texture Analysis and History-Based Adaptive Differential Evolution Optimized Support Vector Machine

Autor(en):

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2020
Seite(n): 1-15
DOI: 10.1155/2020/4190682
Abstrakt:

To inspect the quality of concrete structures, surface voids or bugholes existing on a concrete surface after the casting process needs to be detected. To improve the productivity of the inspection work, this study develops a hybrid intelligence approach that combines image texture analysis, machine learning, and metaheuristic optimization. Image texture computations employ the Gabor filter and gray-level run lengths to characterize the condition of a concrete surface. Based on features of image texture, Support Vector Machines (SVM) establish a decision boundary that separates collected image samples into two categories of no surface void (negative class) and surface void (positive class). Furthermore, to assist the SVM model training phase, the state-of-the-art history-based adaptive differential evolution with linear population size reduction (L-SHADE) is utilized. The hybrid intelligence approach, named as L-SHADE-SVM-SVD, has been developed and complied in Visual C#.NET framework. Experiments with 1000 image samples show that the L-SHADE-SVM-SVD can obtain a high prediction accuracy of roughly 93%. Therefore, the newly developed model can be a promising alternative for construction inspectors in concrete quality assessment.

Copyright: © 2020 Nhat-Duc Hoang and Quoc-Lam Nguyen et al.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10427987
  • Veröffentlicht am:
    30.07.2020
  • Geändert am:
    02.06.2021