0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Nondestructive Evaluation of Prestressed Concrete Beams using an Artificial Neural Network (ANN) Approach

Autor(en):

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Structural Health Monitoring, , n. 4, v. 5
Seite(n): 313-323
DOI: 10.1177/1475921706067759
Abstrakt:

An artificial neural network (ANN) based approach for the assessment of damage in prestressed concrete (PSC) beams using its present stiffness and natural frequency as the test inputs to the ANN has been proposed. The details of the extensive experimental programme designed and executed in this study to induce the known extent of damage in the PSC beams by a method that resembles natural damage processing techniques and to generate the training and test data for the ANN used to model damage levels have been presented. It has been demonstrated that it is possible to assess the damage with reasonable accuracy by the ANN learning by a back propagation algorithm and stiffness and natural frequency as test inputs. The efficiency of this damage assessment algorithm has been studied by testing this ANN with the test data available in the literature. The results indicate that this approach can be used as a cost effective and simple structural health monitoring tool for PSC beams since this procedure needs only limited nondestructive static and dynamic measurements on the structure under study.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1177/1475921706067759.
  • Über diese
    Datenseite
  • Reference-ID
    10561545
  • Veröffentlicht am:
    11.02.2021
  • Geändert am:
    26.02.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine