0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

A new approach to estimate compressive strength of concrete by the UPV method

Autor(en):


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Revista IBRACON de Estruturas e Materiais, , n. 3, v. 9
Seite(n): 395-402
DOI: 10.1590/s1983-41952016000300004
Abstrakt:

Although the ultrasonic pulse velocity (UPV) method has been extensively used to estimate concrete compressive strength, the relationship between UPV and concrete strength is mixture dependent. As a result, the applicability of this method to estimate strength is well known to be limited. Aggregate type, cement type, mixture proportions, and water-cement ratio influence such a relationship. Nevertheless, UPV and strength are both governed by cement hydration, and thus, a relationship between UPV in the cement paste phase and concrete compressive strength would be expected to exist. By not taking into account the type and volume content of aggregates, this relationship could be the same for concrete mixtures with same type of cement and water-cement ratio, regardless the aggregate type used. This study investigates the existence of such a relationship. Concrete mixtures with water-cement ratios of 0.48, 0.55 and 0.64, with different paste volumes were prepared in the laboratory. For each mixture, compressive strength and ultrasonic pulse velocity were evaluated at various ages. The UPV of each concrete phase: paste, fine aggregate, and coarse aggregate, was obtained through paste and mortar specimens. This study indicated that it is possible to establish a unique relationship between the UPV in cement paste phase and the concrete compressive strength. This unique relationship could be applied to several concrete mixtures, greatly expanding the use of the UPV method to estimate compressive strength.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1590/s1983-41952016000300004.
  • Über diese
    Datenseite
  • Reference-ID
    10413401
  • Veröffentlicht am:
    12.02.2020
  • Geändert am:
    12.02.2020
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine