A Neural-Wavelet Technique for Damage Identification in the ASCE Benchmark Structure Using Phase II Experimental Data
Autor(en): |
Mahmoud M. Reda Taha
|
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Advances in Civil Engineering, 2010, v. 2010 |
Seite(n): | 1-13 |
DOI: | 10.1155/2010/675927 |
Abstrakt: |
Damage pattern recognition research represents one of the most challenging tasks in structural health monitoring (SHM). The vagueness in defining damage and the significant overlap between damage states contribute to the challenges associated with proper damage classification. Uncertainties in the damage features and how they propagate during the damage detection process also contribute to uncertainties in SHM. This paper introduces an integrated method for damage feature extraction and damage recognition. We describe a robust damage detection method that is based on using artificial neural network (ANN) to compute the wavelet energy of acceleration signals acquired from the structure. We suggest using the wavelet energy as a damage feature to classify damage states in structures. A case study is presented that shows the ability of the proposed method to detect and pattern damage using the American Society of Civil Engineers (ASCEs) benchmark structure. It is suggested that an optimal ANN architecture can detect damage occurrence with good accuracy and can provide damage quantification with reasonable accuracy to varying levels of damage. |
Copyright: | © 2010 Mahmoud M. Reda Taha |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 3.0 (CC-BY 3.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
2.7 MB
- Über diese
Datenseite - Reference-ID
10177050 - Veröffentlicht am:
07.12.2018 - Geändert am:
02.06.2021