Natural Gas Consumption Monitoring Based on k-NN Algorithm and Consumption Prediction Framework Based on Backpropagation Neural Network
Autor(en): |
Yaolong Hou
Xueting Wang Han Chang Yanan Dong Di Zhang Chenlin Wei Inhee Lee Yijun Yang Yuanzhao Liu Jipeng Zhang |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 21 Februar 2024, n. 3, v. 14 |
Seite(n): | 627 |
DOI: | 10.3390/buildings14030627 |
Abstrakt: |
With increasing consumption of primary energy and deterioration of the global environment, clean energy sources with large reserves, such as natural gas, have gradually gained a higher proportion of the global energy consumption structure. Monitoring and predicting consumption data play a crucial role in reducing energy waste and improving energy supply efficiency. However, owing to factors such as high monitoring device costs, safety risks associated with device installation, and low efficiency of manual meter reading, monitoring natural gas consumption data at the household level is challenging. Moreover, there is a lack of methods for predicting natural gas consumption at the household level in residential areas, which hinders the provision of accurate services to households and gas companies. Therefore, this study proposes a gas consumption monitoring method based on the K-nearest neighbours (KNN) algorithm. Using households in a residential area in Xi’an as research subjects, the feasibility of this monitoring method was validated, achieving a model recognition accuracy of 100%, indicating the applicability of the KNN algorithm for monitoring natural gas consumption data. In addition, this study proposes a framework for a natural gas consumption prediction system based on a backpropagation (BP) neural network. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
3.5 MB
- Über diese
Datenseite - Reference-ID
10773713 - Veröffentlicht am:
29.04.2024 - Geändert am:
05.06.2024