Multi-Objective Optimization of Outdoor Thermal Comfort and Sunlight Hours in Elderly Residential Areas: A Case Study of Beijing, China
Autor(en): |
Hainan Yan
Lu Zhang Xinyang Ding Zhaoye Zhang Zizhuo Qi Ling Jiang Deqing Bu |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 18 Dezember 2024, n. 12, v. 14 |
Seite(n): | 3770 |
DOI: | 10.3390/buildings14123770 |
Abstrakt: |
To optimize the outdoor thermal comfort and sunlight hours of elderly residential areas in cold regions of China, we collected data on streets and building forms from 121 elderly residential sites in Beijing. Utilizing parametric modeling tools to generate ideal residential models, a multi-objective optimization algorithm was applied to identify 144 Pareto solutions. The optimal solutions were analyzed using K-means clustering and Pearson correlation analysis to examine how block form affects outdoor environmental performance. The universal thermal climate index (UTCI) in summer showed significant positive correlations (r > 0.72) with the distance between buildings (DB), building density (BD), shape coefficient (SC), and coefficient of variation for building height (CVH), and significant negative correlations (r < −0.82) with average building height (AH), floor area ratio (FAR), volume area ratio (VAR), mean building area (MA), average building volume (AV), and open space ratio (OSR). Winter UTCI was significantly positively correlated with AH, FAR, VAR, MA, and AV (r > 0.83) and significantly negatively correlated with DB, porosity (PO), SC, and CVH (r < −0.88). Sunlight hours were significantly positively correlated with DB, PO, OSR, and CVH (r > 0.84) and significantly negatively correlated with AH, BD, FAR, SC, VAR, MA, and AV (r > 0.88). Courtyard and point-building configurations performed the best across all optimization objectives. (The value of r, Pearson’s correlation coefficient, ranges from −1 to +1. r = +1: Perfect positive correlation, r = −1: Perfect negative correlation, r = 0: No linear correlation). |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
15.64 MB
- Über diese
Datenseite - Reference-ID
10810573 - Veröffentlicht am:
17.01.2025 - Geändert am:
17.01.2025