0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Movement Laws of Overlying Strata above a Fully Mechanized Coal Mining Face Backfilled with Gangue: A Case Study in Jiulishan Coal Mine in Henan Province, China

Autor(en):
ORCID
ORCID




Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2021
Seite(n): 1-20
DOI: 10.1155/2021/9939886
Abstrakt:

The aim of this study is to obtain movement laws of overlying strata above a fully mechanized coal mining face backfilled with gangue and solve the problem of surface subsidence during coal mining. This study was carried out based on gangue backfilling mining of Jiulishan Coal Mine (Jiaozuo City, Henan Province, China) from the perspectives of deformation of backfilled gangue under compaction, surrounding rock of a stope, and activities of key strata. The method combining with rock mechanics, viscoelastic mechanics, control theory of rock mass under mining, and numerical simulation was used based on physical and mechanical characteristics of backfilled gangue. On this basis, the research analyzed the temporal-spatial relationships of activities of surrounding rock of the stope, compressive deformation of backfilling body, failure depth of the floor, deformation characteristics of the main roof with laws of surface subsidence. The movement characteristics of overlying strata above the fully mechanized coal mining face backfilled with gangue and the traditional fully mechanized mining face were compared. It is found that, under the same conditions of overlying strata, movement laws of overlying strata are mainly determined by the mining height of coal seams and the heights of a caving zone and a fracture zone are nearly linearly correlated with the mining height. Through analysis based on thin-plate theory and key stratum theory, the location of the main roof of the fully mechanized coal mining face backfilled with gangue in coal seams first bending and sinking due to load of overlying strata was ascertained. Then, it was determined that there are two key strata and the main roof belongs to the inferior key stratum. By using the established mechanical model for the main roof of the fully mechanized coal mining face backfilled with gangue and the calculation formula for the maximum deflection of the main roof, this research presented the conditions for breaking of the main roof. In addition, based on the theoretical analysis, it is concluded that the main roof of the fully mechanized coal mining face backfilled with gangue does not break, but bends. The numerical simulation results demonstrate that, with the continuous increase of strength of backfilled gangue, the stress concentration degree of surrounding rock reduces constantly, so does its decrease amplitude. Moreover, the compressive deformation of backfilling, failure depth of the floor, and bending and subsidence of the main roof continuously decrease and tend to be stable. The mechanical properties of backfilling materials determine effects of gangue backfilling in controlling surface subsidence. Gangue backfilling can effectively control movement of overlying strata and surface subsidence tends to be stable with the increase of elastic modulus of gangue.

Copyright: © Zhengkai Yang et al.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10609888
  • Veröffentlicht am:
    08.06.2021
  • Geändert am:
    17.02.2022
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine