0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Monitoring mechanical behaviors of CLT connections under reciprocating loading based on PZT-enabled active sensing and machine learning algorithms

Autor(en): ORCID

ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Smart Materials and Structures, , n. 2, v. 32
Seite(n): 024001
DOI: 10.1088/1361-665x/acadbb
Abstrakt:

Monitoring the mechanical behaviors of cross-laminated timber (CLT) connections is of great importance to the condition assessment of timber structures. To date, numerous research works have demonstrated that Lead Zirconate Titanate (PZT)-enabled active sensing approaches can achieve structural healthy state monitoring under monotonic loads, whereas their effectiveness for reciprocating loads still needs to be further studied. Moreover, traditional PZT-enabled active sensing approaches depend on prior knowledge and human judgment, restricting their field applications. Based on the above background, this research proposes an innovative method to monitor the mechanical behaviors of CLT connections under reciprocating loading by integrating PZT-enabled active sensing and eight machine learning (ML) approaches. Meanwhile, a new damage index based on wavelet packet decomposition and multiple signal path fusion is designed to improve the performance of ML methods. Finally, cyclic loading tests on CLT connections are conducted to demonstrate the outstanding capabilities of the proposed method than conventional PZT-enabled active sensing approaches.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1088/1361-665x/acadbb.
  • Über diese
    Datenseite
  • Reference-ID
    10707599
  • Veröffentlicht am:
    21.03.2023
  • Geändert am:
    21.03.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine