Modelling of the deformation behaviour of a magnetic hydrogel in a magnetic field gradient
Autor(en): |
C. Czichy
S. Odenbach |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Smart Materials and Structures, 19 Oktober 2023, n. 11, v. 32 |
Seite(n): | 115008 |
DOI: | 10.1088/1361-665x/acf96f |
Abstrakt: |
An ink made of alginate and methylcellulose with embedded magnetite microparticles was developed for extrusion printing. Constructs, so-called scaffolds, are colonised with cells which can be activated by mechanical stimulation. In this work, a defined magnetic field gradient is applied to achieve non-contact deformation. However, the deformation behaviour or relevant material parameters of the hybrid material are unknown. While the properties were determined with experiments adapted to hydrogels, a separate experimental set-up for micro-computed tomography, adapting the Maxwell configuration, was developed to investigate the deformation behaviour. These analyses were performed depending on ageing and particle concentration. For these tests, strands were used as bending beams, since these are simple and well known systems. Firstly, a model for the bending curve was erected, which defines a range in which the real bending curve would be expected. It was compared with the measured bending curves. There was very good agreement for the first days. On day 14, the measured bending curves were still within the calculated range, but at the lower limit due to the shortcomings of the model as the violation of the small deformations condition at this point. Secondly, the bending as a function of incubation duration was observed by a series of radiograms when a magnetic field gradient was applied. From this, a functional approach was formulated to describe the system response. Some parameters have already been identified, for others a proposal is given. Thirdly, microscopic analyses were carried out to observe the effects of the field gradient on particle distribution and structure. It was revealed that a homogeneous particle distribution was found even after 2.5 h. Also, in the direction of the field gradient, no chains were formed and no damage of the network could be detected. The obtained results show, that the material is suitable for mechanical stimulation. |
Copyright: | © 2023 C Czichy, S Odenbach |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
2.55 MB
- Über diese
Datenseite - Reference-ID
10742628 - Veröffentlicht am:
28.10.2023 - Geändert am:
07.02.2024