0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Modeling turning performance of Inconel 718 with hybrid nanofluid under MQL using ANN and ANFIS

Autor(en): ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Frattura ed Integrità Strutturale, , n. 70, v. 18
Seite(n): 71-90
DOI: 10.3221/igf-esis.70.04
Abstrakt:

Soft computing techniques, with their self-learning capabilities, fuzzy principles, and evolutionary computational philosophy, are being increasingly utilized in modeling complex machining processes. This study develops artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models to predict cutting force, surface roughness, and tool life during Inconel 718 turning with a hybrid nanofluid under minimum quantity lubrication. The hybrid nanofluid was created by combining 50–50% multi-walled carbon nanotubes and aluminum oxide nanoparticles with vegetable-based palm oil. ANFIS and ANN models were constructed with data from well-designed machining trials. The ANFIS model predicted machining performance using fuzzy logic, whereas the ANN model employed a feedforward neural network design. The results showed that both models were able to accurately predict the machining performance. However, ANFIS outperforms ANN in terms of accuracy, with prediction errors of 4.47% and 10.97% for surface roughness, and 6.05% and 9.86% for tool life, respectively. However, the accuracy of cutting force prediction was slightly higher with the ANN. This shows that ANFIS could be a better option for forecasting the machining performance while turning Inconel 718. However, this study suggests further investigation into ANFIS modeling, with a focus on membership function parameter optimization through hybrid optimization techniques.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.3221/igf-esis.70.04.
  • Über diese
    Datenseite
  • Reference-ID
    10798259
  • Veröffentlicht am:
    01.09.2024
  • Geändert am:
    01.09.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine