0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Modeling the Compressive Strength of Ultra-high Performance Concrete (uhpc) by A Machine Learning Technique Optimized by Novel Algorithm

Autor(en):




Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Stavební obzor - Civil Engineering Journal, , n. 3, v. 33
Seite(n): 329-344
DOI: 10.14311/cej.2023.03.0025
Abstrakt:

The Ultra-High Performance Concrete (UHPC) as an efficient material in constructional projects needs to be investigated in terms of ingredients and their magnitudes to compute the compressive strength of concrete. Empirical determination of relationships between constituents can demand more energy and cost. At the same time, the intelligent systems have enabled us to appraise the compressive strength based on ingredients' composition. Also, choosing eco-friendly materials in concrete as one of the widely-used items worldwide should be encouraged. This study has attempted to model the compressive strength of UHPC. Support Vector Regression (SVR), as a machine learning technique aligned with the Particle Swarm Optimization (PSO) and Henry's Gas Solubility Optimization (HGSO), have been used to simulate the compressive strength of concrete calculated based on different materials used in the present article. Eight constituents were tested to generate the compressive strength values. Various metrics were used to evaluate the modeling process. In this regard, the R2 of test phase modeling for SVR-HGSO was obtained 0.960 while for SVR-PSO, 0.925. In the training stage, the correlation rate was computed 0.902 for SVR-HGSO, which is 1.7 percent higher than SVR-PSO with R2 0.887.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.14311/cej.2023.03.0025.
  • Über diese
    Datenseite
  • Reference-ID
    10756488
  • Veröffentlicht am:
    14.01.2024
  • Geändert am:
    14.01.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine