0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Modeling of Pavement Roughness Utilizing Artificial Neural Network Approach for Laos National Road Network

Autor(en):



Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Journal of Civil Engineering and Management, , n. 4, v. 28
Seite(n): 261-277
DOI: 10.3846/jcem.2022.15851
Abstrakt:

The International Roughness Index (IRI) has become the reference scale for assessing pavement roughness in many highway agencies worldwide. This research aims to develop two Artificial Neural Network (ANN) models for Double Bituminous Surface Treatment (DBST) and Asphalt Concrete (AC) pavement sections using Laos Pavement Management System (PMS) database for National Road Network (NRN). The final database consisted of 269 and 122 observations covering 1850 km of DBST NRN and 718 km of AC NRN, respectively. The proposed models predict IRI as a function of pavement age and Cumulative Equivalent Single-Axle Load (CESAL). The obtained data were randomly divided into training (70%), validation (15%), and testing (15%) datasets. The statistical evaluation results of the training dataset reveal that both ANN models (DBST and AC) have good prediction ability with high values of coefficient of determination (R2 = 0.96 and 0.94) and low values of Mean Absolute Error (MAE = 0.23 and 0.19) and Mean Squared Percentage Error (RMSPE = 7.03 and 9.98). Eventually, the goodness of fit of the proposed ANN models was compared with the Multiple Linear Regression (MLR) models previously developed under the same conditions. The results show that ANN models yielded higher prediction accuracy than MLR models.

Geografische Orte

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.3846/jcem.2022.15851.
  • Über diese
    Datenseite
  • Reference-ID
    10661371
  • Veröffentlicht am:
    23.03.2022
  • Geändert am:
    23.03.2022
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine