0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Modeling Cost-Estimation Factors for Public Building Projects with Hybrid Approach in Addis Ababa

Autor(en): ORCID
ORCID

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2024
Seite(n): 1-11
DOI: 10.1155/2024/1737352
Abstrakt:

Assessing the most important cost-influencing factors is essential for enhancing the predictive ability of cost estimation for building construction projects. The goal of this study is to examine and design a valid cost prediction model for assessing factors that impact the cost estimation of public buildings in Addis Ababa. This research solves these issues that typically arise in predictive cost estimation models in two major processes. First, the insights of 133 professionals gathered on the 38 cost-impacting elements, and 15 top factors design, time or cost, and parties’ experience were determined. The suggested hybrid approach is based on the Akaike information criterion (AIC) and principal component regression (PCR) employed, coupling a stepwise linear regression model. According to the findings of the study, principal component analysis reduced important factors to 14 and efficiently solved the problem of multicollinearity with a variance inflation factor of less than 2, while stepwise cross-validation solved the overfitting problem at the lowest AIC. The cost prediction model sorted out five factors: design completion by the public body when bids are invited; completion of the project scope definition when bids are invited; level of construction complexity; importance of project completion within budget; and subcontractor experience and capability have all been identified as the main cost-determining factors. The study’s contribution is the first approach (PCR–AIC) utilized in this work to explore numerous cost-estimating components, eliminate those that were related to one another, and identify the most crucial ones that consisted of the majority of the original variables’ attributes.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1155/2024/1737352.
  • Über diese
    Datenseite
  • Reference-ID
    10786142
  • Veröffentlicht am:
    20.06.2024
  • Geändert am:
    20.06.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine