0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Model Building for Regional Ecological Risk Prediction and Evaluation of Prediction Accuracy

Autor(en):

ORCID

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2021
Seite(n): 1-8
DOI: 10.1155/2021/6209506
Abstrakt:

The regional ecological risk model is built to predict the regional ecological risk level more accurately by using principal component analysis and optimizing standard BP neural network. Taking Xiangxi Tujia and Miao Autonomous Prefecture as an example, twelve primary factors affecting regional risk are selected. The sample data are processed by principal component analysis. The obtained main components are then used as input factors of the improved BP neural network, and the level of ecological risk is used as output factor. The results indicate that the error between the expected output and the actual output is 4.36% in 2016, 1.08% in 2017, and 5.18% in 2018, respectively, with all controlled within 6%. Compared with the prediction accuracy made by standard BP neural network without principal component analysis, the prediction accuracy made by improved BP neural network with principal component analysis is greatly improved. This comprehensive prediction model provides a better evaluation method for prediction of ecological risk level.

Copyright: © 2021 Jia Shao et al.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10625336
  • Veröffentlicht am:
    26.08.2021
  • Geändert am:
    17.02.2022
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine