Mixed Production Line Optimization of Industrialized Building Based on Ant Colony Optimization Algorithm
Autor(en): |
Xiaobo Chen
Fangfang Yu Hengyu Zhou Zhengdao Li Kuo-Jui Wu XiKun Qian |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Advances in Civil Engineering, Januar 2022, v. 2022 |
Seite(n): | 1-12 |
DOI: | 10.1155/2022/2411458 |
Abstrakt: |
Prefabricated components production line optimization is critical for improving industrialized building construction efficiency; however, few studies focus on the production line optimization problem in context of industrialized building construction. In order to optimize the large random orders in the prefabricated components production process, this research proposes a model to minimize variance of the production capacity utilization of prefabricated components in the production cycle, and the ant colony optimization algorithm is introduced to solve the mixed production line sequencing optimization problem. By optimizing the sequence, the production capacity of the component production is balanced, and the capacity utilization rate in the industrialized building construction process is improved. Finally, the effectiveness of the method is verified through a real case of fabricated building components production. The results show that the variance of daily production capacity utilization rate of the optimized hybrid component production line has reduced to 0.53%, which is significantly lower than the 2.45% before optimization. The proposed model could effectively achieve the production capacity balance of prefabricated components production line. |
Copyright: | © Xiaobo Chen et al. et al. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
1.36 MB
- Über diese
Datenseite - Reference-ID
10691824 - Veröffentlicht am:
23.09.2022 - Geändert am:
10.11.2022