Methodology For Determining Reliable Traffic Parameters For Current Analysis Of Performance Of Motorways And Expressways
Autor(en): |
Malwina Spławińska
|
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | The Baltic Journal of Road and Bridge Engineering, März 2019, n. 1, v. 14 |
Seite(n): | 104-123 |
DOI: | 10.7250/bjrbe.2019-14.435 |
Abstrakt: |
In this paper, the results of analyses concerning selected traffic characteristics typical for Polish motorways and expressways are presented. The input data were collected automatically by stations located on various highways. In the first place, with the use of the coefficient of variability, periods with the lowest traffic volume variability in the year and the day were determined. On this basis, the most favourable time scope of random measurements was determined to allow reliable estimation of traffic parameters for road performance analyses. Then, based on model relationships between the characteristics of traffic volume variability over time and constant volume (regression relationships, a model of Artificial Neural Networks), correction factors were developed enabling direct conversion of the obtained measurement results into Design Hourly Volume. In addition, the rules for determining the share of heavy vehicles meeting the conditions at peak hours of the year were developed. The presented approach is in line with the current research trend on a global scale and allows for improving the accuracy of estimating Design Hourly Volume by 20 per cent concerning the method currently recommended in Poland. |
Copyright: | © 2019 Malwina Spławińska |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
1.01 MB
- Über diese
Datenseite - Reference-ID
10311394 - Veröffentlicht am:
04.04.2019 - Geändert am:
02.06.2021