0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Metaheuristic-Based Machine Learning System for Prediction of Compressive Strength based on Concrete Mixture Properties and Early-Age Strength Test Results

Autor(en):
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Civil Engineering Dimension / Dimensi Teknik Sipil, , n. 1, v. 20
Seite(n): 21
DOI: 10.9744/ced.20.1.21-29
Abstrakt:

Estimating the accurate concrete strength has become a critical issue in civil engi­neer­ing. The 28-day concrete cylinder test results depict the concrete's characteristic strength which was prepared and cast as part of the concrete work on the project. Waiting 28 days is important to guarantee the quality control of the procedure, even though it is a slow process. This research develops an advanced machine learning method to forecast the concrete compressive strength using the concrete mix proportion and early-age strength test results. Thirty-eight historical cases in total were used to create the intelligence prediction method. The results obtained indicate the effectiveness of the advanced hybrid machine learning strategy in forecasting the strength of the concrete with a comparatively high degree of accuracy calculated using 4 error indicators. As a result, the suggested study can provide a great advantage for construction project managers in decision-making procedures that depend on early strength results of the tests.

Copyright: © All right reserved 2018. Civil Engineering Dimension
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 3.0 (CC-BY 3.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10322269
  • Veröffentlicht am:
    12.07.2019
  • Geändert am:
    02.06.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine