Metaheuristic-Based Machine Learning System for Prediction of Compressive Strength based on Concrete Mixture Properties and Early-Age Strength Test Results
Autor(en): |
Doddy Prayogo
|
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Civil Engineering Dimension / Dimensi Teknik Sipil, April 2018, n. 1, v. 20 |
Seite(n): | 21 |
DOI: | 10.9744/ced.20.1.21-29 |
Abstrakt: |
Estimating the accurate concrete strength has become a critical issue in civil engineering. The 28-day concrete cylinder test results depict the concrete's characteristic strength which was prepared and cast as part of the concrete work on the project. Waiting 28 days is important to guarantee the quality control of the procedure, even though it is a slow process. This research develops an advanced machine learning method to forecast the concrete compressive strength using the concrete mix proportion and early-age strength test results. Thirty-eight historical cases in total were used to create the intelligence prediction method. The results obtained indicate the effectiveness of the advanced hybrid machine learning strategy in forecasting the strength of the concrete with a comparatively high degree of accuracy calculated using 4 error indicators. As a result, the suggested study can provide a great advantage for construction project managers in decision-making procedures that depend on early strength results of the tests. |
Copyright: | © All right reserved 2018. Civil Engineering Dimension |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 3.0 (CC-BY 3.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
0.85 MB
- Über diese
Datenseite - Reference-ID
10322269 - Veröffentlicht am:
12.07.2019 - Geändert am:
02.06.2021