0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Mechanical Properties, Workability, and Experiments of Reinforced Composite Beams with Alternative Binder and Aggregate

Autor(en): ORCID
ORCID
ORCID

ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 7, v. 14
Seite(n): 2142
DOI: 10.3390/buildings14072142
Abstrakt:

Arguably the most important element in the sustainability of concrete development is the discovery of an optimal sustainable binder and substitution for the increasingly depleted reserves of natural aggregates. Considerable interest has been shown in alkali-activated materials, which possess good characteristics and could be considered environmentally friendly because of their use of secondary materials in production. The aim of this study was the determination of the mechanical properties of three different mixtures based on the same locally accessible raw materials. The reference mixture contained Portland cement, the second mix contained a finely ground granulated blast furnace slag instead of cement, and the third mixture contained a portion of light artificial aggregate. The experiments focused on the testing and mutual comparison of the processability of the fresh mixture and mechanical characteristics (like compressive and flexural strength, as well as resistance to high temperatures and surface layer tear strength tests). Reinforced concrete beams without shear reinforcement and with three levels of reinforcement were also tested with a three-point bend test. The results show that, overall, the mechanical properties of all the tested mixtures were similar, but each had its own disadvantages. For example, the blast furnace slag-based mixture had a more vulnerable surface layer or a debatable loss of bulk density in the light aggregate mix at the expense of the mechanical properties. One of the main results of the research is that it was possible to technologically produce beams from the alkali-activated concrete (AAC) mixture. Then, the performed beam experiments verified the mechanism of damage, collapse, and load capacity. The obtained results are essential because they present the use of AAC not only in laboratory conditions but also for building elements. In beams without shear reinforcement, the typical tensile cracks caused by bending and shear cracks appeared under loading, where their character was affected depending on the degree of beam reinforcement and loading.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10795174
  • Veröffentlicht am:
    01.09.2024
  • Geändert am:
    01.09.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine