0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Mechanical Analysis of Junction Pier of Fuzhou-Xiamen High-Speed Railway Rigid-Frame Bridge

Autor(en): ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2023
Seite(n): 1-16
DOI: 10.1155/2023/7563415
Abstrakt:

The continuous rigid structure bridge on both sides of the Quanzhou Bay Crossing Bridge uses double-limbed thin-walled flexible piers for the junction piers between the links, and the whole bridge has no bearings. In China, the monolithic bearing-free prestressed concrete continuous rigid-frame bridge is used in railway bridges. The junction pier between the two adjacent couplets is a double-leg thin-walled flexible pier. The single leg thin-walled pier is connected with half of the pier-top segment. During the construction process, the block with numbered zero on the top of the pier is temporarily anchored and connected. Symmetrical cantilevered baskets are used on both sides for construction, and after the mid-pier cantilevered construction is completed, the temporary anchoring device for the block with numbered zero is removed. Because the structural system conversion is required in the construction, the mechanical properties of the junction pier will change greatly before and after the conversion, so it is very necessary to calculate and analyze it to master. In this paper, the finite element model of the connecting pier is established accurately, the stress and deformation of each part of the connecting pier under unfavorable working conditions is analyzed in detail, the seismic spectrum analysis under the action of common earthquake and rare earthquake is carried out, and the stress and deformation law of the structure is expounded, which can provide some reference for the construction of similar projects in the future.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1155/2023/7563415.
  • Über diese
    Datenseite
  • Reference-ID
    10727296
  • Veröffentlicht am:
    30.05.2023
  • Geändert am:
    30.05.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine