Machine Learning Valuation in Dual Market Dynamics: A Case Study of the Formal and Informal Real Estate Market in Dar es Salaam
Autor(en): |
Frank Nyanda
Henry Muyingo Mats Wilhelmsson |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 8 Oktober 2024, n. 10, v. 14 |
Seite(n): | 3172 |
DOI: | 10.3390/buildings14103172 |
Abstrakt: |
The housing market in Dar es Salaam, Tanzania, is expanding and with it a need for increased market transparency to guide investors and other stakeholders. The objective of this paper is to evaluate machine learning (ML) methods to appraise real estate in formal and informal housing markets in this nascent market sector. Various advanced ML models are applied with the aim of improving property value estimates in a market with limited access to information. The dataset used included detailed property characteristics and transaction data from both market types. Regression, decision trees, neural networks, and ensemble methods were employed to refine property appraisals across these settings. The findings indicate significant differences between formal and informal market valuations, demonstrating ML’s effectiveness in handling limited data and complex market dynamics. These results emphasise the potential of ML techniques in emerging markets where traditional valuation methods often fail due to the scarcity of transaction data. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
1.85 MB
- Über diese
Datenseite - Reference-ID
10804627 - Veröffentlicht am:
10.11.2024 - Geändert am:
10.11.2024