0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Machine Learning-Based Probabilistic Seismic Demand Model of Continuous Girder Bridges

Autor(en): ORCID
ORCID

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2022
Seite(n): 1-10
DOI: 10.1155/2022/3867782
Abstrakt:

Probabilistic seismic demand model (PSDM) is one of the critical components of performance-based earthquake engineering frameworks. The aim of this study is to propose a procedure to generate PSDMs for a typical regular continuous-girder bridge subjected to far and near-fault ground motions (GMs) utilizing machine-learning methods. A series of nonlinear time history analyses (NTHAs) is carried out to calculate the damage caused by the far and near-fault GMs for four different site conditions, and 21 seismic intensity measures (IMs) are considered. Subsequently, PSDMs are established for the IMs and engineering demand parameters based on the existing NTHA data using machine-learning methods, which include linear regression, Bayesian regression (BR), and a tree-based model. The results indicated that random forest (RF) is the most suitable model to predict the longitudinal and transverse curvature at the bottom of the four piers from the coefficients of determination. More specifically, the relative importance of each parameter in the model is evaluated, and peak ground velocity (PGV), peak spectral velocity (PSV), Arias intensity (AI), and Fajfar intensity (FI) are found to be the critical factors for the RF-based PSDM. Finally, all of these parameters, except AI, are correlated with velocity. The research results explore a new method for establishing the seismic demand model of continuous-girder bridges, which can provide suggestions for seismic damage prediction and seismic insurance risk evaluation.

Copyright: © 2022 Wenshan Li et al.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10657315
  • Veröffentlicht am:
    17.02.2022
  • Geändert am:
    01.06.2022
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine