0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Machine Learning-Based Prediction of Unconfined Compressive Strength of Sands Treated by Microbially-Induced Calcite Precipitation (MICP): A Gradient Boosting Approach and Correlation Analysis

Autor(en): ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2023
Seite(n): 1-20
DOI: 10.1155/2023/3692090
Abstrakt:

The current study applies a soft-computing approach based on the gradient boosting method to predict the unconfined compressive strength (UCS) of sands treated with microbially-induced calcite precipitation (MICP). A 10-fold cross-validation method and hyperparameter tuning are performed to find the optimal architecture of the gradient boosting algorithm. A total of 402 data of unconfined compression tests performed on biocemented sands are utilized in this study. The dataset includes eight input parameters: median sand particle size, uniformity coefficient of sand, initial void ratio, calcium chloride concentration, urea concentration, urease activity, optical density of bacteria, and calcite content. The finding demonstrates that the gradient boosting method outperformed five commonly used machine learning algorithms (artificial neural networks, random forests, k-nearest neighbors, support vector regression, and decision trees) in predicting the UCS of biocemented sands. Using the gradient boosting, the predicted UCS has a strong correlation with the actual values (R2 = 0.95). Moreover, a series of correlation and feature importance analyses are carried out over the dataset. The relationships between unconfined compressive strength, calcite content, and initial void ratio are discussed within the article. Furthermore, some guidelines are provided for assessing the effect of environmental factors on the UCS of biocemented sands. For further study, the limitations of this study regarding the insufficiency of data for correlation and environmental modification are addressed.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1155/2023/3692090.
  • Über diese
    Datenseite
  • Reference-ID
    10731571
  • Veröffentlicht am:
    21.06.2023
  • Geändert am:
    21.06.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine