0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

LSTM approach for condition assessment of suspension bridges based on time-series deflection and temperature data

Autor(en): ORCID




ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Structural Engineering, , n. 16, v. 25
Seite(n): 3450-3463
DOI: 10.1177/13694332221133604
Abstrakt:

Deflection data provides important information about the mechanical characteristics and structural health condition of bridges. The study presented here pertains to development of a deep learning based approach for structural health monitoring by employing the bridge deflections. The method presented herein uses the long short_term memory (LSTM) framework in detecting the state of damage by tracking the feature changes of time-series deflection and temperature data. Deflection and temperature data of Chongqing Egongyan Rail Transit Suspension Bridge was employed over a period of 15 months to develop the proposed method. The concept of square error index (SE) is introduced as an assessment tool for estimation of the bridge damage level. Results from the present study indicated that the statistical characteristics of SE index are proportional to the level of damage, and are only sensitive to abnormal changes in deflection. Structural health monitoring data over the period of 15 months indicated that the proposed approach has the capability to detect cable damages as low as 0.5%.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1177/13694332221133604.
  • Über diese
    Datenseite
  • Reference-ID
    10696524
  • Veröffentlicht am:
    11.12.2022
  • Geändert am:
    11.12.2022
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine