0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Lorentz attractor excitation-based structural damage identification using state space curvature reconstruction- enhanced transformer

Autor(en):



ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Smart Materials and Structures, , n. 11, v. 33
Seite(n): 115005
DOI: 10.1088/1361-665x/ad7e85
Abstrakt:

Vibration-based structural damage identification has been widely investigated. Different from previous studies that analyze vibrational responses in time and frequency domains, a new Lorentz attractor excitation-based damage identification is becoming a novel strategy with the advantage of capturing the structure’s nonlinear dynamic effects. In this study, Lorentz attractor-based chaotic signals were employed as excitation signals for the structural damage identification of a frame structure. Nonlinear responses were recorded and damages of bolt looseness at different locations were considered. The structural damages could be revealed in the state-space plot of the responses. A state space curvature reconstruction method was introduced to enhance the key features of the nonlinear responses. A small-sample damage identification is performed using a deep learning algorithm—a transformer with an accuracy of 92.38%. The advantages of the proposed method over conventional deep learning algorithms were validated. The proposed method can be applied to health conditions identification of buildings, bridges, and trusses.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1088/1361-665x/ad7e85.
  • Über diese
    Datenseite
  • Reference-ID
    10801388
  • Veröffentlicht am:
    10.11.2024
  • Geändert am:
    10.11.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine