Learning-based classification of multispectral images for deterioration mapping of historic structures
Autor(en): |
Efstathios Adamopoulos
|
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Journal of Building Pathology and Rehabilitation, 16 November 2020, n. 1, v. 6 |
DOI: | 10.1007/s41024-021-00136-z |
Abstrakt: |
The conservation of historic structures requires detailed knowledge of their state of preservation. Documentation of deterioration makes it possible to identify risk factors and interpret weathering mechanisms. It is usually performed using non-destructive methods such as mapping of surface features. The automated mapping of deterioration is a direction not often explored, especially when the investigated architectural surfaces present a multitude of deterioration forms and consist of heterogeneous materials, which significantly complicates the generation of thematic decay maps. This work combines reflectance imaging and supervised segmentation, based on machine learning methods, to automatically segment deterioration patterns on multispectral image composites, using a weathered historic fortification as a case study. Several spectral band combinations and image classification techniques (regression, decision tree, and ensemble learning algorithmic implementations) are evaluated to propose an accurate approach. The automated thematic mapping facilitates the spatial and semantic description of the deterioration patterns. Furthermore, the utilization of low-cost photographic equipment and easily operable digital image processing software adds to the practicality and agility of the presented methodology. |
Copyright: | © The Author(s) 2020 |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
1.72 MB
- Über diese
Datenseite - Reference-ID
10637406 - Veröffentlicht am:
30.11.2021 - Geändert am:
02.12.2021