0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Investigation of the Natural Frequency Change of the Suspension Bridge Under Operating Conditions

Autor(en): ORCID

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: The Baltic Journal of Road and Bridge Engineering, , n. 3, v. 19
Seite(n): 43-68
DOI: 10.7250/bjrbe.2024-19.642
Abstrakt:

This study addresses the challenge of accurately correlating the bridge natural frequency with influencing factors during ambient vibration by analysing on-site monitored data. This knowledge gap arises from the combined uncertainties of environmental factors and monitoring equipment noise. To tackle this challenge, the Fourier synchrosqueezed transform technique is employed and validated first by the simulated signal, as well as the Welch method. Then the instantaneous frequency of recorded acceleration at the real bridge is tracked, and a distinct diurnal pattern in the natural frequency is revealed. Then the two-stage strategy is adopted for the regression analysis. Firstly, the regression models between the normalised vibration intensity and the normalised frequency change of the vertical mode are established. Building upon these results, the additional factor, namely the effective wind speed, is considered in the second stage. The multiple linear regression model is established between the natural frequency change, the vibration intensity, and the effective wind speed. A thorough comparison of the results from both regression models reveals in-depth statistical insights. This study confirms that vibration intensity has a negative effect on the bridge natural frequency, i.e., higher vibration intensity leads to a decrease in natural frequency. Besides, the study also shows that while the effective wind speed has a statistically significant impact on the frequency change of the vertical modes, vibration intensity (caused by traffic loads) appears to be a more dominant factor.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.7250/bjrbe.2024-19.642.
  • Über diese
    Datenseite
  • Reference-ID
    10802033
  • Veröffentlicht am:
    10.11.2024
  • Geändert am:
    10.11.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine