0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Investigation of pull-out and mechanical performance of fibre reinforced concrete with recycled carbon fibres

Autor(en): ORCID
ORCID
ORCID
ORCID
ORCID
ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Materials and Structures, , n. 8, v. 57
DOI: 10.1617/s11527-024-02453-4
Abstrakt:

This paper presents the pull-out bonding behaviour and mechanical performance of recycled carbon fibre (rCF) reinforced concrete based on the recent investigation of fibre reinforced concrete (FRC) with rCF recovered from pyrolysis. Single fibre pull-out tests have been carried out to identify the apparent interfacial shear strength of different types of rCF and virgin carbon fibre (vCF) to identify the fibre matrix connection. Furthermore, a series of tests have been carried out to identify the workability, compressive strength and tensile strength of FRC. Besides rCF, also vCF and steel fibre were used for fabrication of FRC test specimens. rCF have shown the same adhesion behaviour and strength like vCF. Furthermore, the use of unsized or acrylate-based sized rCF creates an adhesion between fibre and matrix material. During the pull-out tests, the failure does not occur as an adhesive crack between fibre and cement matrix, but as a cohesive crack in the cement matrix. The mechanical performance of FRC with rCF was compared with mortar and FRC with vCF and steel fibres. The results of compressive test conducted for FRC with vCF and rCF indicated that the influence of vCF and rCF on the compressive strength of FRC was insignificant. On the other hand, the results of tensile test conducted for FRC with vCF and rCF indicated that the tensile strength of FRC with rCF was at least 14.9% greater than that of FRC with vCF.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1617/s11527-024-02453-4.
  • Über diese
    Datenseite
  • Reference-ID
    10799093
  • Veröffentlicht am:
    23.09.2024
  • Geändert am:
    23.09.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine