0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Interpretation of Machine-Learning-Based (Black-box) Wind Pressure Predictions for Low-Rise Gable-Roofed Buildings Using Shapley Additive Explanations (SHAP)

Autor(en):


ORCID

ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 6, v. 12
Seite(n): 734
DOI: 10.3390/buildings12060734
Abstrakt:

Conventional methods of estimating pressure coefficients of buildings retain time and cost constraints. Recently, machine learning (ML) has been successfully established to predict wind pressure coefficients. However, regardless of the accuracy, ML models are incompetent in providing end-users’ confidence as a result of the black-box nature of predictions. In this study, we employed tree-based regression models (Decision Tree, XGBoost, Extra-tree, LightGBM) to predict surface-averaged mean pressure coefficient (Cp,mean), fluctuation pressure coefficient (Cp,rms), and peak pressure coefficient (Cp,peak) of low-rise gable-roofed buildings. The accuracy of models was verified using Tokyo Polytechnic University (TPU) wind tunnel data. Subsequently, we used Shapley Additive Explanations (SHAP) to explain the black-box nature of the ML predictions. The comparison revealed that tree-based models are efficient and accurate in wind-predicting pressure coefficients. Interestingly, SHAP provided human-comprehensible explanations for the interaction of variables, the importance of features towards the outcome, and the underlying reasoning behind the predictions. Moreover, SHAP confirmed that tree-based predictions adhere to the flow physics of wind engineering, advancing the fidelity of ML-based predictions.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10679553
  • Veröffentlicht am:
    17.06.2022
  • Geändert am:
    10.11.2022
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine